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ABSTRACT

This paper presents a data-driven model for time series prediction of ship motion.
Prediction based on past time series of data is a powerful function in modern ship
support systems. For a large amount of ship sensor data, neural network (NN) is
considered as a proper tool in modeling the prediction system. Efforts are made
to compact the NN structure through sensitive analysis, in which the importance
of each input to the output is quantized and lower ranked inputs are eliminated.
Further analysis about the impact of three different learning strategies, i.e., offline,
online and hybrid learning on the NN is conducted. The hybrid learning combining
the advantages of both the offline learning and the online learning exhibits superior
prediction performance. According to the long term prediction ability of recurrent
NN, multi-step-ahead prediction under the hybrid learning strategy is realized in a
multi-stage prediction form. Experiments are carried out using collected ship sensor
data on a vessel. The results show the feasibility of generating a data-driven model
through modeling and analysis of the NN for ship motion prediction.
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1. Introduction

The scale of maritime industry in Norway has experienced noticeable increase in recent
years. Ships, as the backbone of most of the maritime business, are of great concern
to both ship owners and companies, especially for economically and safety beneficial
reasons (Baldauf et al. 2013). Usually, there are various sensors installed on the ship,
some of which are used in real time for maneuvering and related actions, and some of
which are placed in sensitive areas like propeller blade to collect the data for future
purpose such as system diagnosis (Lynch et al. 2006). The sensor data is stored for
years in huge size. One of the goals is to improve the control of ship motion from
prediction perspective (Fossen 2002). However, how to effectively dig into the data
set and find out valid ship motion models is still challenging. This is because on the one
hand, ship dynamics varies with navigational status such as the load and the speed;
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on the other hand, environmental perturbations such as wave, wind and current are
too complex to predict (Sørensen 2011).

Nowadays, prediction is applied in various domains, from weather forecast to prod-
uct marketing. Campos et al. (2013) applied linear regression (LR) methods to approx-
imate the true unknown genetic values which can be a complex function involving the
genotype of the individual. Min and Lee (2005) proposed a grid-search technique to
find out the optimal parameters for kernel function of support vector machine (SVM)
to build the bankruptcy prediction model. Petrich et al. (2013) presented a long term
prediction model by using an extended Kalman filter (KF) to select a representa-
tive set of reasonable trajectories for a vehicle from a digital map. Carman (2008)
investigated the relationship between tire working parameters and soil compaction
characteristics and applied fuzzy logic (FL) method to predict the changes. Beside the
above mentioned techniques, some other popular predictive modeling techniques, such
as decision tree (DT), model predictive control (MPC) and NN, are also considered
to be efficient for predictive purposes (Myles et al. 2004; Qin and Badgwell 2003;
Mackay 1995; Shen and Xie 2005). A simple comparison of these prediction methods
is stated in Section 2.1.

For ship maneuvering, health, safety, environment, security and cost are given high
priority during maritime operations. Ship motion prediction are therefore essential for
the emergence of new demands in offshore operations (Qu et al. 2014; Li and Sun
2012; Perera and Soares 2010). In the literature, attempts especially developing NN-
based models have been made to predict ship motion in terms of thruster forces, pitch
and roll angles, heading, speed and position. For example, Lee et al. (2001) developed
an online training functional-link NN to estimate the ship position during dynamic
positioning. Yin et al. (2013) presented an online prediction model of ship roll motion
by using a variable structure radial base function NN. Simoes et al. (2002) introduced
a structured NN for modeling and prediction of the mooring cable forces. Zhang and
Liu (2014) designed a wavelet NN with time delay to address the feasibility issues in
ship heading prediction and control in the presence of disturbance.

Despite the fact that different types of NN models are applied for ship motion
prediction, most of the aforementioned prediction models are tailor-made for certain
specific prediction of ship motion. Furthermore, the learning strategies are seldom
discussed in terms of prediction steps in this domain. In general, online, offline and
hybrid learning procedures are the most often used strategies in conjunction with NN
structures (Müller et al. 2012). Different strategies affect the ability of generalization,
as well as prediction accuracy. It is therefore of great significance to make efforts to
develop more general prediction model to investigate the effects of different strategies
for short/long term ship motion prediction. The research of this paper builds upon the
work by Li et al. (2016), but focuses on modeling and analysis of NN construction and
learning strategies. The main contribution of this study lies in a complete procedure
from raw data analysis to NN modeling to short/long term prediction of different
aspects of ship motion.

The paper is organized as follows. Section 2 introduces the related work about
prediction techniques and the recurrent NN. In Section 3, the overall structure of
the prediction system is described. Section 4 shows the modeling and analysis of NN
structure, learning strategies and long term prediction, followed by the corresponding
experiments in Section 5. Conclusion and future work are shown in Section 6.
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Table 1. Comparison of predictive modeling techniques.
Prediction method Advantages Disadvantages

LR

∙ Assume linear approximation
(Chambers and Dinsmore 2014;
Desai and Bharati 1998)

∙ Simple, easy to use and inter-
pretability

∙ Good results for small data sets

∙ No generalization ability (Desai
and Bharati 1998)

∙ Not suitable for complex and
nonlinear problems

SVM

∙ Less over fitting and robust to
noise (Min and Lee 2005; Msiza
et al. 2007)

∙ No local minimal
∙ Good in generalization

∙ Computationally expensive
(Msiza et al. 2007; Auria and
Moro 2008)

∙ Lack of transparency of results
∙ Selection of kernel function

DT

∙ Simple to understand and inter-
pret (Myles et al. 2004)

∙ Fast construction

∙ Not suitable for online learning
(Myles et al. 2004)

∙ High computational complexity
for uncertainty

KF

∙ Intuitive, engineering way of
constructing approximations
(Perera and Soares 2010;
Welch and Bishop 2017)

∙ Computationally efficient
∙ Theoretical stability available

∙ Does not work in consider-
able nonlinearities (Welch and
Bishop 2017)

∙ Works only for Gaussian noise
process

MPC

∙ Systematic design approach
(Qin and Badgwell 2003; Li
and Sun 2012)

∙ Explicit use of a model
∙ Stability guarantee

∙ Limited model choices (Qin and
Badgwell 2003)

∙ Large computation for nonlin-
ear and uncertain systems

FL

∙ Flexible, intuitive knowledge
base design (Carman 2008; Al-
bertos and Sala 1998)

∙ Natural way of expressing un-
certainty

∙ Nontrivial and time consuming
to obtain rules (Albertos and
Sala 1998)

∙ Difficult for performance-
robustness tradeoff

NN

∙ Strong in generalization ability
(Mackay 1995; Müller et al.
2012)

∙ Suitable for problems which are
difficult to specify mathemati-
cally

∙ Efficient for online learning

∙ Limited ability to explicitly
identify possible causal relation-
ships (Müller et al. 2012)

∙ Prone to over fitting

2. Related work

2.1. Comparison of prediction methods

To date, there have been various methods applicable to prediction purpose, as men-
tioned in Section 1. In order to find out which method is preferable to ship motion
prediction, we summarize their pros and cons in Table 1.

Considering the high nonlinearity of ship dynamics and the stochastic external ex-
citations exerted by waves and wind, using LR or KF will lose the multidimensional
generalization ability in the ship motion prediction case. SVM and MPC are good
choices for generalization, except computationally expensive as complexity increases
in uncertain systems. DT is simple to use, but it also suffers computationally com-
plexity problem. Furthermore, DT is not good at online learning that is one of the
strategies we will use for comparison purpose. FL is a potential alternative for ship
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Figure 1. NARX model with delayed inputs and outputs.

motion prediction. However, fuzzy rules are mainly obtained by trial and error from
experiences, which is nontrivial and time consuming in practice. In contrast, NN as
a model free method capable of approximation and adaptation does not have these
problems. It is therefore considered in this paper that NN is the suitable method for
ship motion prediction.

2.2. Nonlinear autoregressive exogenous network

A nonlinear autoregressive exogenous (NARX) network is a complex discrete-time
nonlinear system with feedback connections Menezes and Barreto (2008). For time
series modeling, NARX utilizes current and past values together with nonlinear input-
output mapping for dynamical prediction. Figure. 1 shows an example of two-hidden-
layer NARX network. It can be generally expressed in the form:

y(n+ 1) = f(u,y), (1)

where u ∈ ℝ
p+1 and y ∈ ℝ

q+1 are the inputs of NARX at the time step n; p and q

denote memory order of time history information of inputs and outputs, respectively;
f is the nonlinear mapping for function approximation, implemented in most cases,
by a multilayer perceptron (MLP) NN.

A NARX network with the closed loop is able to make long-term time series pre-
diction. As pointed out by Lin et al. (1996), if the NARX network is unfolded in
time, its output memories appear as jump-ahead connections in the unfolded network.
Learning algorithms, such as the backpropagation through time (BPTT), can be used
to find gradients along the unfolded path. As long as the jump-ahead connections
with shorter paths provide greater total gradient than the gradient through the layer-
to-layer pathways, the output delays of NARX can help reducing the sensitivity of
the network to long-term dependencies. Therefore, in this paper, NARX network is
considered and applied to both short/long-term prediction of nonlinear ship motion.
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Figure 2. System diagram of ship motion prediction.

3. Ship motion prediction model based on NARX network

3.1. System structure for ship motion prediction

A framework for ship motion prediction is proposed based on collected ship sensor
data. The system features flexible and versatile since for different ships, their collected
sensor data can be easily imported into the system to obtain the predictive motion
model. Figure. 2 illustrates the overall structure. It consists of three components:

∙ Purification: Considering the raw sensor data may contains noisy, discontinu-
ous and redundant information, it is necessary to purify it so that its affection
on further analysis and modeling can be minimized. We resample the data that
has different frequency and delete discontinuous data in advance.

∙ Prediction: Prediction is the core of the scheme. It bridges the gap between
the user and the generated database for better understanding and modeling the
data set. Two ways that potentially improve prediction performance are used.
On the one hand, it provides the user with the ability to optimize the data set.
For instance, to generate predictive model for fine maneuvering, one can filter
the velocity and the position of the ship to form a subset of the database before
NN learning. On the other hand, NARX network with different NN learning
strategies is used to analyze and model the data, aiming to realize short/long
-term time series prediction of ship motion.

∙ Verification: To verify the model, the subset is divided into a training set and a
testing set in the proportion of 3:1. The result is visualized by both plotting and
animation. The prediction performance is straightforward. From the practical
point of view, the procedure from purification to verification can fast redo until
reaching the expected prediction error.

3.2. Ship sensor data collection

To generate reliable prediction model, on-board ship sensor data has been collected
by our partner for long time. Four types of data modules, with a sampling frequency
from 1Hz up to 4000Hz, have been collected and imported into the database. The
high sampling frequency data modules are mostly used for propulsion system analysis,
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Table 2. Specification of ship sensor data in low sam-
pling frequency.
Module Frequency Parameter Unit

M1 1Hz

Speed [m/s]
Position [m, m]
Heading [deg]
Roll [deg]
Pitch [deg]

Yaw rate [deg/s]
Roll rate [deg/s]
Pitch rate [deg/s]

M2 1.65Hz

Rotational speed [RPM]
Drive of motor [W]
Propeller force [N]
Propeller pitch [deg]

e.g., the vibration, the ventilation, the bending moment, whereas the low sampling
frequency data modules are the collection of ship status, as shown in Table 2. Note
that M1 is the ship’s extrinsic representation caused by the intrinsic control parameters
like thruster forces from M2. We used both the low sampling frequency data modules
M1 and M2 for ship motion prediction.

3.3. Ship motion modeling and visualization

NN modeling is designed to be as flexible as possible. Regarding generating NN struc-
ture, users are able to model from the number of layers and nodes, the type of activation
function, to the concrete NN inputs and outputs parameters. In addition, the learning
rate and terminate conditions are also optional for modeling.

To better understand the resultant predictive model, the model visualization is
responsible for animating the ship motion, as well as the predictive curves over time.
In the framework, model visualization involve two parts. First, users are provided with
an interface for model interaction. One can filter the training and testing data set as
necessary, for example, to filter the constraints of the speed and the position for fine
maneuvering modeling. Second, there is a flexible overview of the results. One can
select interested time line to display, and to zoom in/out to compare the results. In
this way, users can easily figure out whether the NN modeling and learning procedure
is good enough for certain type of ship motion prediction.

4. Network structure and learning strategies analysis

4.1. Sensitive analysis

Since ship motion prediction refers to various information as shown in Table 2, it is bet-
ter to construct different predictive models against the specific motion prediction. The
reasons lie in two aspects. Regarding to the complexity of the model, single predictive
goal will simplify the network structure and hence improve the generalization ability.
Furthermore, for different predictive tasks, the output would have different degree of
reliance on input information. It is much appropriate to select proper information as
inputs to restrict the network dimension in an acceptable scope.

Sensitive analysis plays the role in evaluating the importance of individual input
for the output in NARX network (Dimopoulos et al. 1995). For a three-layer NARX
network, suppose the input vector x, the hidden vector h and the output y, the input-
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Figure 3. Three learning procedures for ship motion prediction.

output derivatives can be described as:

si =
∂y

∂xi

= f ′(y)
∑

j
wℎof

′(ℎj)wiℎ, (2)

where f(⋅) is the activation function; wiℎ and wℎo are the weights between the input-
hidden layer and hidden-output layer, respectively. This type of derivatives reflects
how much contribution the input to the output in a moment. To estimate the overall
contribution with respect to time series, we followed the definition of sum of square
derivatives (SSD) by Dimopoulos et al. (1995):

SSDi =
∑

t
(si)

2, (3)

which indicates the influence degree of the input to the output. In accordance with
the SSD values, selection of inputs can be achieved by deleting these inputs that have
smaller SSD values than the threshold. As a result, it will compact the network struc-
ture but remain the ability of representing the input-output mapping of the system.

4.2. Learning strategies

Three learning strategies are applied on the NARX network to compare the impact
of prediction precision, as shown in Figure. 3. For offline prediction, the inputs and
the desired output is extracted from the training set of ship sensor data in advance.
The learning cycle is single in the offline process, which means weights and biases are
only updated for the NARX network after the entire time series of the inputs and
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Figure 4. Online learning strategy for single-step-ahead prediction.

the corresponding desired outputs are presented. It is a kind of batch learning. The
prediction results depend on the training set and the number of epochs.

For online prediction, the learning strategy is required to deal with sensor data in a
real-time manner. In general, both the inputs and the desired output in this strategy
are presented in the form of sequential order. The inputs thus can be considered as
the latest ship sensor data from the interaction just happened between the ship and
the environment. The output is represented as the prediction of ship motion in the
near future. Figure. 4 illustrates a single-step ahead prediction procedure using online
learning strategy. Note that different from offline prediction, the weights are updated
per time step. The benefit is to make the trained network be adapted to environmental
changes.

The hybrid prediction is a combination of the above two strategies. It contains
two stages. First, it follows the offline learning procedure. The weights containing
prior knowledge of pasted ship motion is obtained as the initial weights of the NARX
network. Second, it starts the online learning strategy by further adjusting the weights
while the ship is moving. The weights are updated through BPTT by using the error
between the measured and the desired outputs. In theory, The hybrid strategy is more
efficient since the knowledge from offline learning decreases the prediction errors and
converges to acceptable range once online learning is started.

4.3. Multi-step-ahead prediction

In real applications, the single-step-ahead prediction of ship motion is insufficient, as
the navigator may be lack of full picture of ship motion in mind and cannot foresee
the operational consequence promptly. From ship safety point of view, it is critical
to use multi-step-ahead prediction methods to promote the navigator’s awareness of
decision-making.

As introduced in Section 2.2, the NARX network is able to make multi-step-ahead
prediction because of the feedback loop from the output. On the one hand, the in-
puts supply medium to long-term information about the dynamical property of the
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Figure 5. Multi-step-ahead prediction based on the NARX network.

ship status. The output with feedback loop, on the other hand, supplies short-term
information about the same time series. Because there are no new external inputs
being added during the long-term prediction process, training the NARX network to
converge to small output errors is challenging.

To realize multi-step-ahead prediction of ship motion, attempts have been made by
applying the hybrid prediction strategy with small modification. First, through offline
learning, the weights and bias are obtained for single-step-ahead prediction. Then, in
the online learning process, instead of performing single-step-prediction, multi-step-
ahead prediction is executed in a multi-stage form before weight update, as shown in
Figure. 5. It is worth noting that the estimated output is feed back and included as
the only updated input. Therefore, the confidence level for multi-step-ahead prediction
decreases with the growth of prediction horizon. The prediction process repeats until
reaching the predefined prediction horizon. Last, the weight of the NARX network
is updated in the new round of prediction according to the difference between the
measured and the desired outputs. As a result, the modified learning strategy enables
the NARX network to estimate ship motion in the sense of long-term prediction.

5. Experiments

Experiments have been carried out to validate the prediction capability of the proposed
model based on the NARX network. The collected data is from a supply vessel. It
has a mass of 5417 tons and a length of 68.2 m. Figure. 6 illustrates the thruster
configuration. There are five thrusters on the vessel: thruster 1 and 2 are lateral bow
thrusters; thruster 3 is an azimuth thruster in the midway between the bow and the
stern; thruster 4 and 5 are main propellers with rudders at the stern.
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Figure 6. Thruster configuration of the ship.

Sur
ge

 ve
l.

Sway
 ve

l.

Yaw
 ve

l.

Roll
 ve

l.

Pitc
h v

el.

Hea
din

g
Roll

Pitc
h

Thr
1. 

F

Thr
4. 

F

Thr
5. 

F
10-4

10-2

100

102

104

SS
D

Heading
Roll
Pitch

Figure 7. SSD values of heading, roll and pitch in the time series of training data.

5.1. Sensitive analysis result

As the ship status information listed in Table 2, there are 29 attributes in total available
in the database. For simplicity, we only show three of the attributes, i.e., heading, roll
and pitch, as the prediction targets. In addition, the time series of raw data is purified
and cut down for minimizing the affection on further modeling and analysis.

Three NARX networks with full of 29 attributes as inputs were independently gen-
erated for the three prediction targets. The memory for past inputs and outputs are
set p = 3 and q = 3 (See definition in Figure. 1). Through BPTT, the weights of net-
works were updated and the SSD values in (3) that represent the contribution of each
input to the output were then obtained. Figure. 7 shows part of the attributes that
contain relatively high SSD values. Note that besides the high values of self-correlation
of heading, roll and pitch, the three prediction targets are also closely related to the
forces from thruster 1, 4 and 5. The result, to some extent, reveals the forces from the
three thrusters are dominant for propelling in the time series of data.

To compact the NN structure and hence improve the generalization ability of net-
work, the inputs having SSD values lower than a thresholds of 0.01, 0.1 and 1 for
heading, roll and pitch, respectively, were deleted from the networks. The prediction
performance of the trimmed NN is verified in the same order of magnitude as that
of the untrimmed NN. Therefore, the following experiments were performed using the
trimmed NN.

5.2. Learning strategies comparison

We have tested the three learning strategies, i.e., offline, online and hybrid learning,
in one-step-ahead predicting different aspects of ship motion, including trajectory,
heading, roll, pitch, surge, sway and yaw velocity. For concise reason, only the pitch
angle prediction is illustrated in Figure. 8 for comparison. In general, there is no
regular pattern in the time series of the pitch angle. Through sensitive analysis, 18

10



0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

-0.1

0

0.1

0.2

Pi
tc

h 
an

gl
e 

[r
ad

]

Raw data
Offline learning
Prediction

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

-0.1

0

0.1

0.2
Pi

tc
h 

an
gl

e 
[r

ad
] Raw data

Online prediction

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [s]

-0.2

-0.1

0

0.1

0.2

Pi
tc

h 
an

gl
e 

[r
ad

] Raw data
Offline learning
Online prediction

Figure 8. Comparison of pitch angle prediction using three different learning strategies.

of 29 attributes were selected as the inputs of the NARX network for pitch angle
prediction.

The top panel of Figure. 8 is the result of offline learning. Two thirds of the raw
data is used for training, while the rest is used for testing. The network stopped
training after 113 epochs until the mean squared error (MSE) decreased to a magnitude
of 10−6. The prediction result is accurate and close to the raw data. The middle
panel of Figure. 8 shows the online learning result. The MSE for the whole sequence
is about 9.33 × 10−5, which indicates the prediction performance is relatively poor,
especially when the spikes occur. It depends on how fast the NN weights are updated
to respond to the rapid changes of pitch angle in the consecutive sequence. Hybrid
learning result is at the bottom panel of Figure. 8. Compared to online learning,
the prediction performance is satisfactory, where the average MSE is significantly
decreased to 9.04×10−8. It is obvious that the hybrid learning strategy is superior for
fast convergence of prediction error in a real-time fashion.

5.3. Multi-step-ahead prediction result

Precise long term prediction of ship motion is a tough task, since there are a lot of
operational interactions and environmental disturbances. The goal in this experiment
does not intend to improve the precision of long term prediction. Instead, we aim to
find out the feasibility of the proposed strategy in Section 4.3 and analysis why the
potential consequences are generated.

The hybrid learning strategy for multi-step-ahead prediction was carried out. Again,
we use the pitch angle prediction for illustration. Figure. 9 shows seven trials of 30-
step-ahead prediction of the pitch angle (naming from A to G). Offline learning was
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done in advance to obtain prior knowledge of past pitch angle variation. Each trial
was then performed after the online update of weights, ensuring the NN is adapt to
the recent changes of time series of data. Figure. 10 illustrates the prediction errors of
the corresponding trials. The prediction error is small if the changes of the pitch angle
is small (E.g., trials A, F and G). Whereas prediction performance decreases when
there are dramatic fluctuations of the pitch angle (E.g., trial B). Another finding from
Figure. 9 and Figure. 10 reveals that the prediction is highly dependent on the pattern
of recent changes of pitch angle. Trials A and B are much in evidence among these
trials. This is consistent with the modified hybrid learning strategy where the NN
weights are updated in an online manner.

The performance of multi-step-ahead prediction is not as satisfactory as the one of
single-step-ahead prediction. The main impact factor lies in the multi-stage prediction
form. Because the inputs are fixed during prediction, the NARX network tends to
suffer from error accumulation problems as it tries to capture the fluctuations of the
finite past of both inputs and outputs in time series. The bias and variance from
previous time steps are therefore accumulated and propagated into future predictions.

6. Conclusion

In this paper, the modeling and analysis of a data-driven model for ship motion pre-
diction is emphasized. By comparing with different prediction techniques, the NARX
network is chosen as the core of our ship motion prediction framework. Ship sensor
data is collected and purified in advance. In order to model a compact NN structure,
sensitive analysis is used for quantification of the significance from the inputs to the
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outputs. Three learning strategies, including offline, online an hybrid learning are an-
alyzed. The hybrid learning shows better prediction performance as it combines the
other two strategies together. Taking advantages of long term prediction ability of
the NARX network, multi-step-ahead prediction is realized under the hybrid learn-
ing strategy. Experimental results show that modeling and analyzing of the NARX
network is helpful in generating the data-driven model for ship motion prediction.

Future work will focus on two aspects. First, more information about the environ-
mental changes like wind speed and wave height should be involved in modeling the
NARX network. Second, what is the appropriate memory in the NARX network will
be investigated and optimized for long term prediction of ship motion.
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