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Abstract This paper presents an adaptive neural network (NN) controller for
fine trajectory tracking of surface vessels with uncertain environmental distur-
bances. Regarding to the new demands for fine trajectory tracking, especially to
the requirement of high accuracy tracking in limited working space, the proposed
NN controller is designed to contain a tracking error control component and a
velocity error control component, aiming to converge both types of error to zero,
separately. It utilizes radial basis functions to approximate a vessel’s unknown
nonlinear dynamics. Therefore, there is no need of any explicit knowledge of the
vessel. The online learning ability is obtained during the stability analysis by using
the backstepping technique and the Lyapunov theory. Theoretical results guaran-
tee both the convergence of tracking error and velocity error and the boundedness
of NN update. Through simulation and tracking performance study based on the
CyberShip II model, the proposed controller is verified effective in fine trajectory
tracking.

Keywords Adaptive neural controller · Trajectory tracking · Online learning ·
Surface vessels

1 Introduction

The dynamic positioning (DP) formulation was motivated by marine applications
in which a vessel can accurately maintain both its position and heading at a fixed
location or pre-determined paths by means of thruster forces [1]. DP technique has
made many marine operations come true, such as deep sea exploration, offshore oil

This work is supported by a grant from the “Marine Operations in Virtual Environments”
project in Norway.

G. Y. Li · W. Li · H. P. Hildre · H. X. Zhang
Faculty of Maritime Technology and Operations, Aalesund University College, Postboks 1517,
N-6025, Aalesund, Norway.
Corresponding author: Guoyuan Li
Tel.: +47-70161325
E-mail: guli@hials.no



2 Guoyuan Li et al.

Fig. 1 Fine trajectory tracking.

drilling and pipeline maintenance. From the guidelines for vessels with DP systems
issued by the International Maritime Organization, vessels with DP systems are
conducive to increase maneuverability under specified maximum environmental
conditions. DP systems have been employed for ships, mobile offshore drilling
units, offshore support vessels and oceanographic research vessels. Nowadays, due
to the theoretical challenges of DP technique and the growth of emerging demands
from offshore applications, developing new types of DP systems is challenging.

In the literature, there are two challenges for designing efficient DP systems [2].
First, because the dynamics of the vessel varies with navigational status such
as the load and the speed during DP operations, its dynamics is nonlinear and
time-varying. It is impossible to fully depict the dynamical behavior using current
modeling techniques. Therefore, in the early research, controllers for DP systems
were designed with an assumption of linearizing the dynamics model. A lot of
model-based adaptive controllers were developed by researchers based on the as-
sumption [3–5]. Recently, Some robust controllers based on the techniques, such
as Lyapunov’s direct method [6], backstepping technique [7] and sliding mode
control [8], have shown low sensitivity to parameter variations and disturbances.
Although they can accomplish the model-based controller design, they still rely on
the knowledge of the dynamics model. The second challenge is derived from the
operation environment. Environmental perturbation such as waves, wind and cur-
rents is complex and unpredictable. However, its effect on DP systems cannot be
neglected. More recently, some passive nonlinear observers were presented [9] [10].
By estimating the constant or the time-varying disturbances, compensating control
laws were designed to improve the DP accuracy. Although the two DP challenges
are solved by aforementioned results to some extent, they still attract a lot of
attention from marine technology communities.

To date, with the development of approximation-based control techniques,
breakthrough achievements have been made for DP systems. A good number of
novel intelligent control methods such as fuzzy control and neural network (NN)
control were proposed [11–18]. Owing to the approximation capability of learning
and adaptation, there is no need to spend much effort on system modeling. Chang
et al. designed a Takagi-Sugeno type fuzzy model to represent the nonlinear system
by using a set of fuzzy rules[11]. In [12], a novel model reference adaptive robust
fuzzy control algorithm was proposed to approximate unknown functions includ-
ing lumped model parameters and external disturbances for ship course-keeping
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tasks. Skjetne et al. used an adaptive recursive design method to describe a para-
metrically uncertain ship and applied it on dynamic maneuvering[16]. Leonessa
et al. proposed a NN model reference controller to improve the control perfor-
mance in terms of tracking in the presence of unmodeled dynamics [13]. Tee and
Ge developed a single-layer NN as a linearly parameterized approximator of ship
uncertainties and unknown disturbances for trajectory tracking [14]. Pan et al. pre-
sented similar work by using a regressor to express the highly nonlinear dynamics
of a vessel [15]. Both Dai et al. and Xia et al. employed a radial basis function in
NN to estimate and compensate the uncertainties of ship dynamics and environ-
mental disturbances [17] [18]. According to the backstepping technique and the
Lypunov theory, they succeeded to improve the control performance and reduce
the tracking errors.

From a control point of view, fuzzy control is nontrivial and time consum-
ing in practise since it obtains rules mainly by trial and error from experiences.
In contrast, adaptive NN control is capable of deterministic learning, i.e., online
adjusting unknown control model parameters. Therefore, adaptive NN control is
superior to fuzzy control, especially when controlling complex, nonlinear and un-
certain systems. Unlike classical statistical learning theory, an online learning NN
is designed based on deterministic learning theory [19]. With deterministic learn-
ing, fundamental knowledge for system dynamics can be identified by the online
learning NN through accumulating and storing historical data, and meanwhile
represented in a deterministic manner. Unfortunately, the key ability of online
learning of NN control is seldom addressed in DP system design in the literature.

Our project aims to make the best use of the NN learning ability and develop
NN-based controllers for DP systems to achieve real-time control of marine ves-
sels. In this paper, we emphasize the design of an adaptive NN controller for fine
trajectory tracking tasks. Fine trajectory tracking is a new demand in offshore op-
erations, which requires fine maneuvering of marine vessels around target object,
as shown in Fig. 1. Fine manoeuvring not only requests low speed of vessels and
high position control accuracy, but also has very strict and limited working spaces
during offshore operations. To release the burden of the operators and increase the
safety of operations, we propose an adaptive NN controller for fine manoeuvring.
The main contributions of this paper include:

– An adaptive NN control algorithm together with a stability proof is proposed
with unknown ship dynamics.

– A complete simulation for online learning of ship dynamics is carried out using
the Cybership II ship model [20].

The paper is organized as follows. Section 2 introduces the NN model and the
description of dynamics of a vessel. In Section 3, the adaptive NN controller is
presented in detail. The simulation and some performance studies are shown in
Section 4, which is followed by discussions in Section 5. Conclusions and future
work are given finally.

2 Related Work

2.1 Radial basis function neural network

Radial basis function neural network (RBFNN) is a type of feedforward approx-
imator and is usually used to approximate continuous nonlinear functions [21].
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Fig. 2 Structure of the RBFNN.

It contains three layers: input layer, hidden layer and output layer, as shown in
Fig. 2. In this paper, we take measurements from sensors as inputs and use the
RBFNN to generate forces for fine manoeuvring.

Assume the number of nodes in the three layers of the RBFNN are m, n, and
p, respectively. Let X = [x1, x2, ..., xm]T be the input vector and H = [h1, h2, ...,
hn]

T be the hidden vector. The mapping from the input layer to the hidden layer
is nonlinear. Here we use Gaussian function, the most commonly used radial basis
function to approximate a nonlinear function:

hi = exp(−‖X − µi‖
2/2σ2

i ), i = 1, 2, ..., n (1)

where µi = [µi1, µi2..., µim]T is the center of the i-th Gaussian function and σi is
the width of the i-th Gaussian function. The mapping from the hidden layer to
the output layer is linear. We define W ∈ Rn×p as the weigh matrix between the
two layers. Then the nonlinear function is described as:

F (X) =WTH + ǫ(X) (2)

where ǫ is the approximation error. In [21], it has been shown that if the node
number n in the hidden layer is large enough, the RBFNN output WTH can
smoothly approximate the nonlinear function by online updating W towards the
ideal weight matrix W ∗:

W ∗ = argmin
W ∗∈Rn×p

{sup |ǫ(X)|} (3)

2.2 Ship dynamics

For a horizontal motion of a fully actuated surface vessel, only three motion com-
ponents including surge, sway and yaw are taken into consideration. The other
motion components are neglected. According to Fossen [2], the DP system model
in the presence of disturbances can be described as:

η̇ = J(η)ν (4)

Mν̇ + C(ν)ν +D(ν)ν +∆ = τ (5)
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where

J(η) =





cos(ψ) -sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 (6)

is the rotation matrix. The vector η = [x, y, ψ]T contains the positions (x, y) and
the heading ψ of the vessel in the earth-fixed frame. The vector ν = [u, v, r]T

represents velocities in surge, sway and yaw in the body-fixed frame, respectively.
M ∈ R3×3 is the system inertia matrix. C(ν) ∈ R3×3 is the Coriolis and centripetal
terms. D(ν) ∈ R3×3 is the damping matrix. ∆ ∈ R3 is the environmental distur-
bance vector. τ ∈ R3 is the vector of the generalized control forces consisting of
the surge force, the sway force and the yaw moment.
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Fig. 3 Block diagram of the control system.

Although the matrix M that contains the mass, inertia and the added masses
can be obtained accurately by using potential analysis, and several terms in C and
D matrices can be obtained with good accuracy using conventional methods and
softwares, it is difficult to design the control law without a fully obtained hydrody-
namic parameters in these matrices. In addition, the environmental disturbances
∆ cannot be identified and compensated easily. Thus, the control problem lies in
how to develop a NN-based method to approximate the unknown dynamics from
both the vessel and the environment and how to achieve efficient online learning
law for fine trajectory tracking.

3 Adaptive NN Controller Design

In this section, we design an adaptive NN controller for fine trajectory tracking
by combining the backstepping technique with a RBFNN.

Fig. 3 shows the whole structure of the control system. It contains two com-
ponents: the tracking error control and the velocity error control. The tracking
error control is designed to generate a speed control command based on the ref-
erence trajectory. While the velocity error control is designed to further generate
the control law of the surface vessel. It takes the speed control command as input
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and uses the RBFNN to approximate the unknown nonlinear dynamics. Through
Lyapunov stability analysis, the online updating law is derived. The system sta-
bility and convergence are both guaranteed. The following describes the controller
in detail.

The dynamic model in (5) has the following properties [2]:

1). The matrix M is symmetric positive definite;
2). The matrix D is positive definite;
3). The matrix Ṁ − 2C is skew-symmetric.

We assume that:

1). Both η and ν are available without measurement error;
2). The disturbance ∆ is slowly time-variant and bounded;
3). The desired trajectory ηd(t) is smooth enough.

Assumption 3) indicates the time derivative η̇d and η̈d can be obtained from a
trajectory planner. The desired speed νd in the body-fixed frame is defined as:

νd = [ud, vd, rd]
T = J−1(η)η̇d. (7)

Let η̃ = η − ηd be the tracking error in the earth-fixed frame and eη be the
corresponding tracking error in the body-fixed frame. According to (4), eη satisfies:

eη = J−1(η)η̃. (8)

Noting the property JJT = I and taking the time derivative of (8) yield

ėη = J̇T (η)η̃ + JT (η) ˙̃η. (9)

In addition, we have the derivative of J(η) from (6):

J̇(η) = J(η)S(r) (10)

where

S(r) =





0 -r 0
r 0 0
0 0 0



 . (11)

By substituting (4), (7), (8), (10) and (11) into (9), we obtain the derivative of
tracking error in the body-fixed frame:

ėη = ST (r)eη + ν − νd. (12)

Consider a Lyapunov function candidate:

V1 =
1

2
eTη eη. (13)

Its derivative is:

V̇1 = eTη ėη

= eTη S(r)eη + eTη (ν − νd). (14)

Here we choose the velocity ν to follow a command velocity ν0, i.e.,

ν ≡ ν0 = νd −K0eη (15)
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where K0 ∈ R3×3 is a diagonal positive definite design parameter matrix. Noting
that S(r) in (11) is skew-symmetric and thus substituting (15) into (14) yields

V̇1 = −eTηK0eη ≤ 0. (16)

Note V̇1 = 0 only if eη = 0, which means the tracking error eη under the speed
control command (15) is asymptotically stable.

In order to ensure the velocity ν to follow the command velocity ν0, the control
force τ in (5) should be properly designed. Define the velocity error as

eν = ν0 − ν. (17)

Using (5) and taking the derivative of eν , we obtain

ėν =M−1[−τ − Ceν +Mν̇0 + Cν0 +Dν +∆]. (18)

Consider the Lyapunov function candidate V2:

V2 = V1 +
1

2
eTνMeν . (19)

According to (18) and the property 3) of (5), the time derivative of V2 becomes

V̇2 = V̇1 + eTνMėν +
1

2
eTν Ṁeν

= V̇1 + eTν [−τ +Mν̇0 + Cν0 +Dν +∆]. (20)

Here we use a RBFNN f to approximate the uncertainty of the ship dynamics:

f =WTH(X) =Mν̇0 + Cν0 +Dν +∆ (21)

where W ∈ Rn×3 is the weight matrix of the RBFNN; n is the number nodes
in the hidden layer of the RBFNN; X = [ν̇0, ν0, ν]

T is the input vector of the
RBFNN; and H is the hidden vector with Gaussian basis function. We further
design the control law as:

τ = ŴTH(X) +K1eν (22)

where Ŵ ∈ Rn×3 is the estimated weight matrix of the RBFNN and K1 ∈ R3×3

is a positive definite matrix. Substituting (21) and (22) into (20) obtains

V̇2 = V̇1 − eTνK1eν − eTν W̃
TH(X) (23)

where W̃T = ŴT −WT represents the estimate error of the weight matrix of the
RBFNN. Since the last term of (23) cannot guarantee non-positive of V̇2, we have
to further design the updating law for the weight matrix of the RBFNN. Again,
we choose the Lyapunov function candidate V3 as

V3 = V2 +
1

2
tr(W̃TΘW̃ ) (24)
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Fig. 4 Tracking result in xy-plane under time-variant disturbances.

where Θ ∈ Rn×n is a diagonal positive definite design square matrix; tr represents
the trace, i.e., the sum of the elements on the main diagonal of a square matrix.
By differentiating V3 with respect to time, we get:

V̇3 = V̇2 + tr(W̃TΘ ˙̃W )

= V̇1 − eTνK1eν − eTν W̃
TH(X) + tr(W̃TΘ ˙̃W ). (25)

Note that the term eTν W̃
TH(X) is a scalar. According to the switch property of

trace of a product tr(AB) = tr(BA), (25) can be rewritten as:

V̇3 = V̇1 − eTνK1eν − tr(eTν W̃
TH(X)) + tr(W̃TΘ ˙̃W )

= V̇1 − eTνK1eν − tr(W̃TH(X)eTν ) + tr(W̃TΘ ˙̃W )

= V̇1 − eTνK1eν + tr(W̃T (−H(X)eTν +Θ ˙̃W )). (26)

If we choose the updating law as

˙̂
W = ˙̃W = Θ−1H(X)eTν , (27)

V̇3 can be shown to be non-positive:

V̇3 = V̇1 − eTνK1eν ≤ 0. (28)

Note that V̇3 = 0 only if eη = 0 and eν = 0, which implies the convergence of the
tracking error eη and the velocity error eν to zero as well as the boundedness of
the weight error W̃ .

Thus the proof of the stability for the adaptive NN controller is complete.
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Fig. 5 Uncertain dynamic approximation.

4 Simulation Results

In this section, numerical simulations have been carried to evaluate the effec-
tiveness of the proposed adaptive NN controller. We chose the vessel model—
CyberShip II as the test bed of the controller. The CyberShip II is a replica of a
supply ship in NTNU. It has a mass of 23.8 kg with a length of 1.255 m. More
information about the model is given in detail in [20].

4.1 Trajectory tracking experiment

Table 1 Constructive parameters of the RBFNN

Symbols Values Description
m 9 Number of input nodes
n 1000 Number of hidden nodes
p 3 Number of output nodes
µ [-1,1] Center of Gaussian function
σ 10 Width of Gaussian function
Θ I1000 Weight update rate

The dynamic parameters for the ship model are given as:

M =





25.8 0 0
0 24.661 1.095
0 1.095 2.76





C =





0 0 −24.661v − 1.095r
0 0 25.8u

24.661v + 1.095r −25.8u 0
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and D = [d11 0 0; 0 d22 d23; 0 d32 d33], where

d11 = 0.7225 + 1.3274|u|+ 5.8664u2

d22 = 0.8612 + 36.2823|v|+ 8.05|r|

d23 = −0.1079 + 0.845|v|+ 3.45|r|

d32 = −0.1052− 5.0437|v| − 0.13|r|

d33 = 1.9− 0.08|v|+ 0.75|r|.

To simulate the trajectory tracking task for fine maneuvering, we chose a com-
plex reference trajectory in limited space. The reference trajectory is defined as:

xd = 3sin(0.1t)(1− sin(0.1t))

yd = 3cos(0.1t)

ψd = tan−1(
ẏd
ẋd

)

The initial position of the vessel is placed at [2, 3,−180◦]. We assume there exist
environmental disturbances, which are set as:

∆ =





1 + 0.1sin(0.2t) + 0.3sin(0.4t) + 0.3cos(0.2t)
1 + 0.1sin(0.2t) + 0.2sin(0.1t)− 0.1cos(0.4t)
1 + 0.1sin(0.2t)− 0.3sin(0.4t)− 0.5cos(0.4t).





In the simulation, the design parameters of the controller are chosen as K0 =
0.3I3 and K1 = 12I3. A RBFNN was constructed to approximate the uncertain
dynamics. Table 1 lists the parameters of the RBFNN. Note that the inputs of
the RBFNN are normalized before function approximation. The overall weight Ŵ
of the RBFNN was initially set to zero. The centers of the Gaussian functions are
evenly spaced over the input space. For each input dimension, there are more than
two Gaussian functions (1000 > 29). Therefore, function approximation ability
can be guaranteed.
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Fig. 6 Tracking velocities.
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The tracking result is depicted in Fig. 4. It can be seen that the vessel tracks the
reference trajectory smoothly and accurately under the time-varying disturbances.
Fig. 5 shows how the RBFNN approximates the uncertain dynamics of the vessel.
From the figure, it is clearly observed that the RBFNN can fast and precisely
approach the real dynamics of (21) in a short period of time, which in turn validates
the rapidly exponentially convergence of tracking error and velocity error and the
boundedness of estimation error. Fig. 6 shows the curves of the surge velocity,
the sway velocity and the yaw rate vary with respect to time. The corresponding
control inputs including the surge force, the sway force and the yaw torque are
shown in Fig 7. Considering the scaled version of the ship model, the results are
smooth and reasonable. As a result, the proposed adaptive NN controller really
provides good tracking behavior.

4.2 Control parameter analysis

As described in Section 3, the adaptive NN controller can be affected by the control
gain K0 and K1, as well as the parameters that are involved in the RBFNN.
Here, we investigate how they affect the tracking performance. To quantitatively
analyze the impact of each control parameter, only one parameter is tuned within
an acceptable range while the other parameters are fixed to the values that are
shown in Section 4.1.

4.2.1 Control gain K0 & K1

From Fig. 3, it can be seen the control gain K0 affects the tracking performance
indirectly by modifying the inputs of the RBFNN. Fig. 8 illustrates the comparison
of tracking performance for different scaling of K0. From the top figure, it is ob-
served that with the growth of K0, both the transient period and the steady-state
tracking error decrease. But the corresponding initial forces/torque τ from the
bottom figure increase exponentially. Furthermore, the oscillation of forces/torque



12 Guoyuan Li et al.

0 100 200 300 400 500
0

1

2

3

‖η̃
‖

t [s]

 

 

K
0
 = diag(0.01)

K
0
 = diag(0.1)

K
0
 = diag(1)

0 100 200 300 400 500
0

10

20

30

40

50

‖τ
‖

t [s]

 

 

K
0
 = diag(0.01)

K
0
 = diag(0.1)

K
0
 = diag(1)

Fig. 8 The variation of tracking performance by scaling K0. Top: norm of tracking error.
Bottom: norm of resultant force/torque.

during the transient period increases dramatically, which is of low practicability
and maneuverability for real applications. Further increasing K0 is meaningless
since the resultant forces/torque is beyond the saturation limits of the ship model.
An intuitive tuning of K0 is suggested between [0.1I3, 0.4I3].

A similar scaling of the control gain K1 is shown in Fig. 9. Although K1 has
a direct impact on the resultant forces/torque τ , modifying K1 will not change
the transient period and the magnitude of forces/torque so much. If K1 is small,
e.g. K1 ≤ 5I3, the resultant forces/torque τ will be always insufficient, resulting
in an inferior tracking performance. But when K1 is large enough, e.g. K1 ≥ 10I3,
continuously increasing K1 will not affect the steady-state tracking error at all.
Similar to K0, the growth of K1 leads to the growth of the corresponding initial
forces/torque. To simulate fine maneuvering in a realistic manner, K1 is suggested
to choose within [10I3, 20I3].

4.2.2 Control parameters in the RBFNN

The tracking performance is also sensitive to the control parameters in the RBFNN.
As mentioned before, the number of hidden nodes n in RBFNN determines how
accurate the RBFNN is to approximate unknown nonlinear functions. Therefore,
changing the number of hidden nodes in RBFNN will definitely affect the tracking
performance. From Fig. 10, increasing n has no impact on the tracking perfor-
mance except the steady-state tracking error. A larger number of n results in a
lower steady-state tracking error. However, continuously increasing n cannot sig-
nificantly decrease the steady-state tracking error but brings more computational
complexity. Therefore, in the simulation, tuning n to 1000 could be a good trade-off
between the steady-state tracking error and the computational complexity.

The update rate Θ is another impact factor of the tracking performance, as
shown in Fig. 11. From the top graph of Fig. 11, increasing Θ mainly affects
the steady-state tracking error. A higher value of Θ leads to a lower steady-state
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tracking error. However, combined with the bottom graph of Fig. 11, continuously
increasing Θ has a little improvement for the tracking error, but gives rise to extra
oscillation on the resultant forces/torque. To avoid this happens, Θ is suggested
to be around I1000.
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4.3 Tracking performance comparison

This experiment compares the tracking performance of the proposed adaptive NN
controller with a PID controller using acceleration feedback [2] and a single-layer
NN controller [15]. Both the PID controller and the single-layer NN controller are
performed the experiment in Section 4.1, i.e., to force the ship model to track the
same reference trajectory under the same environmental disturbances.

Because the resultant forces and torque must further distribute to all of the
thrusters on the vessel, it is necessary to reduce the magnitude of forces and torque
to avoid achieving the saturation limit. Hence, we take the magnitude of forces
and torque into consideration and design the system error of the controller as a
function of tracking error and corresponding forces and torque:

‖ζ‖ =
√

‖η̃‖ · ‖τ‖. (29)

In this way, a low system error indicates that the controller only needs to
provider low forces and torque to maintain an acceptable tracking error. Fig. 12
shows the comparison results of tracking performance between these controllers.
All of them can make the ship model follow the desired trajectory under an ac-
ceptable system error. The PID controller needs a nontrivial tuning of the PID
gains to obtain a lower system error value. Even we manage that, the result shows
it has the highest error value at the beginning and an oscillating transient per-
formance before achieving steady state. The single-layer NN controller performs
better than the PID controller but has a higher initial system error value as well
as a slower decay of system error than the proposed adaptive NN controller. This
is because the adaptive NN controller contains an additional nonlinear basis func-
tions of layer that can approximate nonlinear functions more efficiently. From the
result, we conclude that the proposed adaptive NN controller is effective for fine
trajectory tracking.
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Fig. 12 Comparison of tracking performance.

5 Discussion

Here we discuss about the key role of the RBFNN in the proposed controller, as
well as the limitation of the controller in real applications.

As shown in Section 3, the control law in (22) is consisted of two parts: the
estimated dynamic by the RBFNN and the proportional control of velocity error.
At the beginning, the RBFNN has no output due to the zero values of the initial
weights. The proportional control of velocity error is thus dominant to the control
law. Later, as the online learning of the RBFNN and the decrease of the velocity
error, the proportional part will decrease whereas the learned dynamic part would
be in charge of the control law. Therefore, if only the proportional control of
velocity error is used without the RBFNN, the tracking task will fail.

Regarding the limitation of the controller, it is closely related to the assump-
tions we have made in Section 3. First, if the noise of sensor data exists, it will
affect the control law, the updating law, the input vector of the RBFNN, and
consequently affect the tracking performance. The test of sensor noise is beyond
this paper, but in principle, using Kalman filter technique and some sensor fu-
sion algorithms can reduce the impact of sensor noise on tracking performance
to some extent. Second, the controller is not applicable for trajectory tracking in
severe environmental conditions. Because the environmental disturbance changes
more irregularly. However, for most offshore operation applications, including fine
maneuvering, tasks are performed in calm weather. Therefore, the NN-based con-
troller is competent to tasks in that case. Third, to achieve high tracking accuracy,
the desired trajectories are required to be sufficiently smooth. According to (7),
(15) and the input vector of the RBFNN, both η̇d and η̈d should be continuous
and bounded. Actually, smooth trajectory can avoid actuator saturation induced
by sudden jumps of tracking errors. We have tested the controller with different
types of trajectories, such as the elliptic trajectory and the octomorphic trajectory.
The results show good tracking performance for smooth trajectories but inferior
performance for non-smooth ones due to discontinuous command inputs. To sum
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up, the controller is suitable for fine maneuvering with smooth trajectory in calm
weather, as long as sensor noises are eliminated.

6 Conclusion

In this paper, an adaptive NN controller has been designed for fine maneuvering
of surface vessels applying on offshore applications. Taking advantages of function
approximating ability of NN, the proposed controller can achieve online learning
control of trajectory tracking with unknown dynamics of the vessel and uncertain
environmental disturbances. Through the backstepping technique and Lyapunov
stability analysis, the controller is proved stable and guaranteed to converge track-
ing errors to zero. Trajectory tracking simulation and its performance studies are
carried out by using the CyberShip II ship model as the test bed. From the re-
sults, it confirms the effectiveness of the controller for providing good transient
and steady state performance in fine trajectory tracking.

Future work will be focused on twofold: (1) Design hierarchical control for
fine maneuvering from path planning to final thrust allocation, taking into con-
sideration all the constraints such as power consumption and thruster’s features
and capabilities; (2) Develop a training and evaluation system regarding to fine
maneuvering for nautical certification.
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