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Abstract

This paper presents an approach of sensory feedback itilegiato a CPG model under a hierarchical
control architecture for adaptive caterpillar-like locotion. Motivated by the simplicity of CPG models in gait
generation, a sinusoidal generator is employed as the legl tontroller of a caterpillar-like robot. To regulate
the behavior of the robot with respect to the changes of enmiental conditions, a behavior adaptor is designed
to integrate sensory feedback into the sine-based modehassensory input can be transferred into the model
and further affect the output of the model to some extent. rividdle, a policy gradient based reinforcement
learning method is adopted at the high level, aiming to léhenmapping between sensory input and reasonable
responses of the robot. The optimized policy could be obthiafter episodic learning. Simulation results show
the caterpillar-like robot can climb over uneven terrairithvthe help of the sinusoidal generator and the learned
policy, which verifies the effectiveness of the proposedreagh.

. INTRODUCTION

Last century has verified that animal’s locomotion is caifgrbby a special neural circuit called central
pattern generators (CPG) in the spinal cord of vertebraté@howt any rhythmic inputs, CPG can produce
coordinated patterns of rhythmic activity [1]. Althoughetlinderlying mechanisms of CPG are not yet
fully understood, the concept has been widely used in cbtéothinology communities.

In robotics, CPG is usually applied on biologically inspinedbots for gait generation. A lot of CPG
models have been developed in recent years by combiningdiall features and mathematical properties.
From [2], there are three types of CPG models based on theaatistr from neurobiology. The first
type retains and follows most biological mechanisms. Herfearon et al. developed such a CPG
model based on recently revealed strategies of living CPEsSTI8 second type is much simpler that
it only keeps the concept of neurons and synapses. The dommebetween neurons play a key role in
output generation. This type of CPG models is widely used mifspired robots, such as the work by
Ekeberg [4], Kimura [5] and Ma [6]. The last type belongs toagomathematical models, such as phase
oscillators [7] and sinusoidal generators [8][9].
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To date, although CPG is considered an elegant solution foggaeration, there is no universal rules
to directly use CPG models to achieve more complex tasks sldtalization, path planning, navigation
and adaptive locomotion. But in the literature, a good nundfarovel intelligent control methods such
as fuzzy control, genetic algorithm and neural network @nwere proposed to bridge the gap. These
methods can optimize control parameters in CPG models by mizikig a scalar evaluation via the
interaction with the environment. Hasanzadeh proposedzzyfiogic tuner to optimize the locomotion
of a snake-like robot when it moving on terrains with diffierdriction coefficients [10]. Kamimura et
al. developed ALPG software to seek efficient locomotioriggas automatically for a modular robot, in
which a genetic algorithm is used to optimize the CPG netwil.[Tomoyuki et al. proposed a CPG-
based reinforcement learning (RL) to improve the energyieffay of a biped robot [12]. They succeeded
to find out the optimal torque-free period during the bipedalking. Snel et al. used RNN-based CPG
and hierarchical RL on a simulated hexapod robot to realizeaghyc walking on terrains with varying
complexity [13]. Although adaptive locomotion has beenlireal on variety of robots [14]-[18], it is
seldom to see any applications for limbless robots, eslhedta caterpillar-like robots. Moreover, how
to integrate sensory feedback into CPG models for caterfliila robots is also seldom addressed in the
literature.

The research presented in this paper is related to our ogpdoiG project “Biologically Inspired
Modular Climbing Caterpillar Robot Using Passive Adhesion”GBIA). In the project, we combine
CPG properties with the concept of a modular robot to creatvelrclimbing caterpillar-like robot [19].

A hierarchical control architecture including a CPG modethwiaterpillar locomotion features and a

learning algorithm for sensor-servo-based behavior obrigr designed for the control system. In this

paper, we concentrate the effort on integrating sensodbiaek into a CPG model based on a hierarchical
control architecture to realize adaptive caterpillaelilocomotion. The contribution of this paper is

twofold. First, in the low control level, a solution for semg feedback integration into a sinusoidal

generator is proposed. Thus the low level controller noty ddeps its simplicity but also provides

interface for high level control. Second, simulation hasrbenplemented to verify the effectiveness of
the proposed control structure in realizing adaptive loctom for caterpillar-like robots.

The paper is organized as follows. Section Il describes teeatl structure of the hierarchical control
system. In Section Ill, all the control components inclggdthe sine-based model, the process of sensory
information, the method to integrate sensory feedback amwdthe policy gradient based reinforcement
learning works will be presented in detail. Section IV prasesimulation results. Conclusion and future
work are drawn in section V.

[l. HIERARCHICAL CONTROL STRUCTURE

The prior knowledge shows that a CPG model is suitable for gaiteration, while an intelligent
learning method is able to deal with environmental changlsrefore, to achieve adaptive caterpillar-
like locomotion, an intuitive way is to develop hierarcHicantrol architecture by combining the CPG
model with the learning method.

Fig. 1 illustrates the whole control architecture for adagptocomotion. It consists of two levels. At
the low level, a CPG model is employed in the locomotion cdrdomnponent so as to generate gaits for
the robot. Taking advantages of the onboard sensors of th&,rcaw sensor data are gathered during
locomotion. All the raw sensor data are passed to a senser, fitom where they are converted into
reasonable sensory information.

At the high level, a learning method is applied to learn thepireg between the sensory information
and the sensory input to the CPG model. An optimized policy m&l obtained after repeating learning
process. Combining the ability of online modulation of the CfAGdel, a behavior adapter component is



Learning
method

%

&
§ .
XY % &
FS %
) 2
=2 é& 9% %,
6/.-/'
; . o
Highlevel ( Behavior ) ?
Low level adapter
N filter
S
SIS %
(G %
sz§ <.

CPG model Caterpillar-like
Desired joint angle robot

Locomotion control

Environment

Fig. 1. The overall hierarchical control structure.
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Fig. 2. The definition of angle position and the effect of offset setting.

used to bridge the CPG model and the learning method. It plagkean changing the control parameters
of the CPG model in a smooth manner. In this way, the learnadypwill affect the CPG output, resulting
in the adaptation of the robot to any environmental changes.

[1l. | MPLEMENTATION OF CONTROL SYSTEM
The following will present the implementation of each coment in the control system in detail.

A. Locomotion Control

To generate linear gait for a caterpillar-like robot with Itrple degrees of freedom, we apply the
sinusoidal generator as the controller of the robot [8]. Bimusoidal generator is employed for each
module of the robot to generate linear gait. It describesbérading angle of the corresponding module
in function of time. The dynamics of thigh sinusoidal generator are as follows:

.27 .
Oy = Ai - sm(Tt +1i0) + Qb (1)
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Fig. 3. Sensor data processing.

wherey is the desired angle of théh module at theéth time step;A, T, # and{2 donate the amplitude,
the period, the phase difference and the offset of the sidakgenerator, respectively.

Note that the offset paramet@rfor the sinusoidal generator is a function of time in (1). Simdicates
the parametef) can be considered as an adaptive variable modifying thepilde-like robot’s body
shape during locomotion. Fig. 2 illustrates how it affe¢ts body shape of the robot: a positive value of
(2 causes an extra amount of upside bending, while a negatiue @A (2 results in downside bending.
According to the phenomenon, an adaptive controller is @sed to properly change the parameter
when the caterpillar-like robot moving on uneven terraifise purpose is to increase the robot’'s contact
areas and friction, promoting its stability and adaptabillhe following sections will introduce how to
combine this parameter with sensor information to achieleptve locomotion.

B. Sensor Filter

Assume touch sensors are installed at the bottom part ofatezpillar-like robot, which is similar to
the function of prolegs of living caterpillars.

As the robot performs a linear gait during the locomotiorgheanodule of the robot will move up
and down periodically. Correspondingly, its touch sensdl tap on the terrain regularly. But this will
become false when the robot moving on uneven terrains. Becsarse modules of the robot will lose
contact against environmental changes. To sketch out thartesia these touch sensors, it is necessary
to identify whether a module is “periodic touch”, or “loss w@uch”. The sensor filter component play
such a role in handling the raw sensor data and identify tleerhwdule states.

Here we take an example to explain how the sensor filter coergomorks. Considering a case when
the caterpillar-like robot moving from a flat terrain to agsto the robot will get stuck during the climbing
process due to its rigid structure and the unchanged linaiar Bherefore, the internal modules of the
robot will undergo the “periodic touch” state and the “lodstauch” state in succession, as shown in
Fig. 3(a). The spikes of the force measured by the touch sémdicate the contact of the corresponding
module.

The sensor filter component takes two steps to identify thte sthanges of each module. First, it



converts the raw data to an instantaneous contact value bgeshbld function:

1 if R(i t) > ©
it) = p 2
560 {O otherwise 2)

where s represents the instantaneous contact value oftthenodule at theth time step;R is the raw
sensor data; ané is the threshold.
Then the sensor filter component accumulates the instaoarmntact values so as to form module
states:
t

St = t’:tz—kT 1) ( ) (3)

0 otherwise

where S is the module state]’ represents the number of time steps in one period of therligai; &
is a constant that controls how long the passed instantanamntact states are considered.

Fig. 3(b) shows the result after the process of the senser Gimponent. Note that a value of 1 for
S indicates that the module is touching the terrain peridijicashereas a value of 0 means the module
loses contact with the terrain.

C. Behavior Adapter

The behavior adapter component connects the CPG model irowhéeVel and the learning method
in the high level (see details in Fig. 1).

As mentioned in Section IlI-A, the offset paramefern (1) is responsible to modify the body shape
of the caterpillar-like robot, so as to adapt it to enviromta¢ changes. However, abrupt change(bf
can cause the robot to generate jerk behaviors or even getgdmnTo avoid such a result, the sensory
input generated by the learning algorithm is required tadnait to the CPG model in a smooth manner.
Therefore, the dynamics @? is designed as a leaky integrator:

where )\ is the sensory input from the high level;is a time constant that controls the afferent speed
of A\; and A is the amplitude of the sinusoidal generator. To avoid theesx of maximum angle) is
designed in range of [-1, 1].

The leaky integrator works in two opposite ways. On the onedhavhen the sensory input is
non-zero, the leaky integrator will leak a small amount aissey input tof2 in the CPG model with a
speed ofr, until the total amount of afferent sensory input approagh. On the other hand, if a zero
value of sensory input is generated by the learning algoritine leaky integrator will gradually remove
the effect of sensory input ol and finally recover the distorted linear gait back to normates

As a result, the offset paramet@renables the robot to smoothly shift any extra amount of bendi
between the zero value and the desired value, enabling bw to modify its body shape according to
the result from high level.

D. Reinforcement Learning

On the high level, a learning method is used to find the propgpimg from the current module states
to the sensory inputs. Considering that the modules statesdiscrete values 0 and 1, while the sensory
inputs are continuous and as defined bounded in the rangelofi]- it is preferred to choose direct
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Fig. 4. A two-layer neural network for stochastic policy representation.

policy search algorithms rather than value function apgnea. Thus we solve the mapping problem by
using a policy gradient reinforcement learning method .[20]

A two-layer neural network is constructed, as shown in FigAd a way of function approximation,
a stochastic policy can be represented by the neural network

Let z andy denote the units derived from the input layer and the outgpyer, respectively; lef and.J
be the number of units in the two layers; tetbe the weight in the network; and lett; = Zle W,
be the linear representation of the units from the inputraye

For the output layer, the activation function for upijtis designed as a hyperbolic tangent type:

1— 6netj
T 14 enets ©®)

A Gaussian unit is appended to each output yninh the neural network. Use of the stochastic output
unit makes sense because their randomness allows any agcesploration to take place. The Gaussian
unit uses the output unjf as the mean and takes another variablas the standard deviation. Besides,
a probability mass function is designed for the output wiit

g; = Pr{\ly;, o}

1 .
— 6_(>‘J _yy)2/2‘72 (6)
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The sensory output; thus can be sampled frog:
Aj=yjto-n (7)

wheren ~ N(0,1). N(0,1) is a Gaussian distribution which has a mean of 0 and a variahte
Since the randomness of all the Gaussian units is indepemaenidentically distributed, the overall
probability mass function is dependent on the productiomdividual probability:

J
g= ng (8)
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TABLE |
MODULE SPECIFICATION

Components  Module Touch sensor

Length (mm) 72 10
Width (mm) 52 52
Height (mm) 52 10
Weight (g) 150 10

According to [20], The weight between the input unjtand the output uniy; can be updated by:

Aw;; = afr — b)a(;nT@
— /(=B — )1 — ) ©)

where«’ is the learning rate; is the rewardp is the reinforcement baseline.
As a result of weight update, an optimized policy will be obéal.

IV. SIMULATION

A simulation has been carried out to verify the feasibilitiytbe hierarchical control architecture.
For simplicity, a simplified caterpillar-like robotic cogfiration was designed in Open Dynamics Engine
(ODE) [21]. In the simulation, to comply with the rules in treal world, we set the gravity te9.81m/s?
and the friction coefficient t0.6. The robot has 6 modules with 7 touch sensors mounted at titsnvo
Each module is a simple rigid box, as shown in Fig. 5. Betweeah eaodules, a joint is utilized to
connect and enable the module to rotate in a vertical plarte avirange of+90°. Table | lists the
specification of the robot’s module.

TABLE 1l
CPGCONTROL PARAMETERS IN SIMULATION

Parameters  Value Description
A 20 Amplitude
T 20 Time steps in one period
0 27/3 Phase difference
T 5 Afferent speed of sensory input
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A linear gait with an amplitude 020° and a phase difference @20° is applied on the robot as the
basic locomotive pattern. Table Il shows the control patenseof the CPG model that are used in the
simulation. A simulation scenario is also constructed inEDRonsisting of two complete sinusoidal
surfaces, as shown in Fig. 7. It has a lengtt8of, a width of 0.8m, and the maximum height @f.5m.

The goal of this experiment is to obtain an optimized policytisat the robot can climb over the uneven
terrain autonomously and adaptively. In the learning taskyo-layer neural network with 7 input units
and 6 output units is generated for policy search. The weighthe neural network are initialized to
random values and the standard deviatofor each Gaussian unit is unified to 0.1. The learning rate
and the reinforcement baseline are set to 0.1 and O, regplgcih reward is defined as weighted average
between normalized forward speed and normalized toucb: rati

Reward =n- — + (1—mn) St (20)
; ; o
wheren is the weight { = 0.8 in the simulation for faster climbing speed but inferior ¢buratio); v
and v, are the forward speed for the robot to climb over uneven itermad flat terrain, respectively;
Sy represents théth module state at thah time step;m is total module number of the robot; and
is the total time step.

The policy is trained in an episodic manner. First, for eapls@le, the simulation runs under the
current policy with a fixed amount of time steps. A reward idanfed at the end of each episode.
Then, the current policy is updated along the gradient tioecwith respect to the expected reward.
This process is repeated until the predefined number of @pésis reached. Last, the Gaussian units in
Fig. 4 are removed after training. In this experiment, thenber of episodes to be done is set to 1000.
Fig. 6 shows the variation of the reward with respect to thenlmer of episodes. The result reveals that
the robot managed to climb over the terrain after about 1i€odps and the performance of adaptive
locomotion was gradually promoted to steady state with ardvef 0.75 after 200 episodes.

Fig. 7 illustrates how the robot climbs over the sinusoi@atdin using the final obtained policy. When
the robot climbs up slopes, the policy generates positifgebbn the internal modules of the robot, so
that most modules of the robot can contact with the terraiprépel the robot forward. Whereas during
the downhill movement, the policy produces positive offsetboth ends of the robot. The robot thus
bends up its head and tail to speed up the downhill motione Nloat after the downhill motion, the



Fig. 7. Scenes of adaptive caterpillar-like locomotion. Adaptive locomatiarts from left to right.

policy removes the effects of offset on the modules at bottsefherefore, the robot gradually recovers
to the normal linear motion.

The whole climbing process lasts about 3200 time steps. iFmlisity, here we only track the middle
module of the robot (module 4). Fig. 8 shows the the variatibthe sensor input and the module output
for module 4 during the simulation. From Fig. 8(a), the seysoput is modified dramatically to the
positive extreme around the 10 15004 and 2900h time steps, when the robot is climbing at the
left end, the middle and the right end of the terrain, respelgt Fig. 8(b) shows the module bends
upside correspondingly at these time steps. It is worthngothat recovery of offset bending always
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Fig. 8. Tracked data for module 4 in the simulation. (a) The sensory ifipuThe module output.

happens after these extreme spikes of sensory input. Thellemedn bend back to normal state in a
short period. The angle variation for module 4 is smooth aa$onable, which helps the robot to adapt
to the environmental changes.

From the simulation result, we conclude that the effectagsnof our proposed hierarchical control
system.

V. CONCLUSION

In this paper, how to combine sensory feedback with a CPG modehierarchical control architecture
to realize adaptive caterpillar-like locomotion is preseh First, as a simple CPG model, sinusoidal
generators are utilized as the locomotion controller ofrtmot. Taking advantages of online modulation
of CPG models, sensory feedback is designed to regulate fiset of the CPG output. Then, sensor data
filtering is used for simplifying sensory information frorhet environment. Next, a mapping between
the sensory information and the sensory input to the CPG msdstlidied by means of policy gradient
reinforcement learning. Through episodic learning, annoiged policy can be obtained for specific
applications. Last, simulation results show the proposppraach is effective in realizing adaptive
locomotion for caterpillar-like robots.

Future work will focus on two aspects: (1) Refine the mechari@nsensory integration, in particular
for developing more powerful sensory feedback control fot anly affecting the offset, but also the
phase difference and the amplitude of the CPG model. (2) Camininltiple channels of information
from sensors such as accelerometer and camera to improyeetbeption of environmental changes.
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