
FLEXIBLE MODULAR ROBOTIC SIMULATION ENVIRONMENT FOR RESEARCH
AND EDUCATION

Dennis Krupke∗, Guoyuan Li and Jianwei Zhang
Department of Computer Science

University of Hamburg
Email: {3krupke, li, zhang}@informatik.uni-hamburg.de

Houxiang Zhang and Hans Petter Hildre
Faculty of Maritime Technology and Operations

Aalesund University College
Email: {hozh, hh}@hials.no

∗corresponding author

KEYWORDS
Modular robots control, educational software, Open-
RAVE, interactive simulation

ABSTRACT
In this paper a novel GUI for a modular robots simula-
tion environment is introduced. The GUI is intended to
be used by unexperienced users that take part in an edu-
cational workshop as well as by experienced researchers
who want to work on the topic of control algorithms of
modular robots with the help of a framework. It offers
two modes for the two kinds of users. Each mode makes
it possible to configure everything needed with a graph-
ical interface and stores configurations in XML files.
Furthermore, the GUI not only supports importing the
user’s control algorithms, but also provides online mod-
ulation for these algorithms. Some learning techniques
such as genetic algorithms and reinforcement learning
are also integrated into the GUI for locomotion optimiza-
tion. Thus, its easy to use, and its scalability makes it
suitable for research and education.

INTRODUCTION
Robotics is one of the best ways to motivate young peo-
ple to work with new technologies. As explained in
(Daidié et al., 2007) especially modular robots are very
popular among students. Simulative robotic systems
are usually developed to help them to get familiar with
robotics. On the other hand, these simulative systems are
also good testbeds for research. Experienced people can
save time by using the functions of the proposed frame-
work and focus on the development of new algorithms.
A lot of robot simulation software has been developed.
There are general purpose simulators for mobile robots
in 2D, 2.5D and 3D, like Player/Stage (2D), Gazebo
(2.5D) from the player-project, described in (Player-
Project, 2008), and Webots (3D) that can be found in
(Michel, 1998). All of them offer so much freedom to
the users that it is hard for them to start immediately
with a simulation according to current needs. There are
also special purpose simulators for grasping like GraspIt!
(Miller et al., 2004) and OpenGRASP (León et al., 2010)
that are based on OpenRAVE. But to the best of our

knowledge there is no special purpose simulation soft-
ware for modular robots that allows for fast and easy cre-
ation of a simulation setup while being easy to use and
easy to understand.
A modular robot GUI has been developed that enables
the user to focus on robotics while most of the program-
ming part is hidden. This idea is also described in (Zhang
et al., 2006). In contrast to other powerful systems only
few rules have to be learned for proper use of our sys-
tem. Motivation is the most important aspect for peo-
ple who have just begun with something new to proceed
and succeed. The GUI enables the user to get results
very quickly because only some basic knowledge about
the application space of modular robotics is needed. This
makes the simulation system suitable for educational pur-
poses with hard time restrictions, typical for a workshop
or project. The research-related user also benefits from
these properties. In research an expert configuration in-
terface can be used to create several simulations. Some
parts in the hierarchy of a complete configuration, for
example the robot or the environment, can be reused to
save time and to make different control algorithms com-
parable. To compare different control algorithms in a
reliable way, an abstract base class has been developed
that is used to implement several locomotion algorithms
published by different institutions. It has been tested
with arbitrary algorithms like the MTRAN-CPG (Mu-
rata et al., 2002), different networks of CPGs based on
spiking/bursting-neurons, described by (Herrero-Carrón
et al., 2010), and many more. The extension of the library
with control algorithms can be performed with the help
of software development patterns described in (Gamma
et al., 2005) and (Beveridge, 1998). Methods to analyze
the kinematics, described in (Hirose et al., 1990) and (Hi-
rose, 1993) can be added and the results passed to special
data handlers. These handlers are needed to visualize the
data and to write it to the disk.
In the following a short introduction to the modular
robots GUI and its components that has been developed
is given. It is followed by a detailed description of sev-
eral parts of the software and an example that shows how
the system can be used, before the final section presents
the paper’s conclusion and raises possible future work.

INTRODUCTION TO THE MODULAR ROBOTS
GUI
For achieving realistic and reasonable simulations, the
simulated world should look and behave as close to
the real world as possible; therefore a system using a
physics-engine and a 3D-viewer is needed. OpenRAVE
(Diankov, 2010) offers calculation of the physics and
three-dimensional visualization of the running simula-
tion. It is a controlling and planning software that is
developed as a general robotics simulation and control
system. It can be extended easily to fulfill the demands
of the user. In our simulation system many components
of OpenRAVE have been applied:

• 3D-viewer interface and implementation of Coin3D

• Physics engine interface and implementation of
ODE

• XML- and COLLADA readers

• Abstract sensor interface and implementations of
several sensors

ODE (Smith, 2006) works as a physics engine to cal-
culate realistic behaviour of the rigid bodies. After the
robot has been assembled, sensors can be attached to the
robot and the configuration can be stored in an XML-
file. With another XML-file the user is able to describe
a world. Concepts like cloning allow us to run a copy of
a simulation. This is ideal to run copies of simulation
in parallel or to start an identic simulation again with
only a small change in the configuration of the control
algorithms. OpenRAVE has become very popular be-
cause of its modules that calculate the inverse kinemat-
ics for several industrial robot arms. It is under intense
development and the support using the user-list is very
fast. Many institutes from different countries are cur-
rently working with OpenRAVE. That makes it an ideal
base for our ideas. By now, OpenRAVE offers a package
for the Ubuntu Linux operating system that enables the
automatic installation of all needed dependencies includ-
ing Coin3D, SoQt, ODE and many more. In this way, it
is very comfortable to install OpenRAVE on a standard
Ubuntu system.

A plugin for OpenRAVE (Gonzalez-Gomez, 2010)
the OpenMR-plugin has been written by Juan Gonzalez-
Gomez. It implements a servo controller as shown in
Fig.1. In modular robotics these are used to drive robots.
The controllers have been applied to our system as well
as the 3D-model of a modular robot prototype included
by the plugin. The robot model that has been used in
our experiments is described in (Gonzalez-Gomez et al.,
2006).
To access the core simulation system including the
physics-engine and the 3D-viewer and the robot models,
graphical user interfaces for comfortable handling have
been implemented. In addition I/O-classes and a kernel
for control algorithms used in our simulation container
have been added.

Figure 1: Concept of the used servo controller (Figure is
taken from (Gonzalez-Gomez, 2010)). As level 1 con-
trollers several algorithms has been implemented using
the abstract interface for actuation modules.

The GUI elements and many classes, extending the stan-
dard library of C++, are taken from Qt, Boost and QWT.
One of the main features is that the user can easily create
his own algorithm for joint control. This can be a loco-
motion algorithm or an adaptive algorithm to adjust the
shape of the robot. Another feature is that all parameters
of this new algorithm can be accessed and changed while
the simulation is already running. This makes it possi-
ble to experiment with different values to gain a better
understanding of the algorithm. It also allows us to im-
plement online-optimization methods to find good sets
of values for the parameters for different purposes. The
GUI is divided into two main parts, the configuration-
and the control-GUI. The configuration part permits the
setting up of everything that is neccessary to run a certain
simulation while the control GUI offers online control
over the control algorithms and supervision of the robot
within its world. Additionally it is possible to see certain
live plots of different data.
To enable the user to configure simulations, a configu-
ration GUI with two different modes has been imple-
mented. One interface for a user at the beginner level and
one for an intermediate or experienced user. A level of
detail has been found that is complex enough for reason-
able usage. Beginners get in touch with a configuration-
wizard that guides them step by step through the process
of configuration. Clear instructions explain the current
task and the meaning of the information that needs to be
filled in. The user is not asked for filenames as every-
thing gets stored automatically. The filenames are gener-
ated automatically at predefined places within the project
folder. The expert-configuration-dialog makes very flex-
ible configurations possible. Both configuration inter-
faces allow the user to create and extend the user-library
of control algorithms for robot-joint-actuation during the
runtime of the program. OpenRAVE utilizes XML-
format to define robots with its sensors, physical prop-
erties and the environments the simulation is set in. This
property has been extended with actuation-configuration
files to assign control algorithms to the robot very easily.

In this way, as many control algorithms as needed can be
assigned to many different groups of joints. Each group
must consist of at least one joint. Overlapping groups are
allowed. Complex architectures can be built from basic
building blocks.
The function of the control GUI is to supervise the sim-
ulation with the help of several visualizations and to ad-
just everything just in time while the simulation is run-
ning. This can be used to do experiments in an ex-
plorative way, manually by a user or automatically by
an optimization-process. To supervise the control algo-
rithms and the robot, applied to the current simulation,
a monitoring system has been included. It allows us to
select and combine several data plots to show them on
the screen. These are live-plots, used to see the current
state of the simulation. This combined with the possibil-
ity to adjust the parameters of the locomotion algorithms
on-line makes the GUI a powerful system for interactive
experiments and automated optimization.
To record all of the calculated data of interest, a data file
writer has been developed that stores everything to an
XML-file. Special readers for this file format are able to
extract a single series of data. Data series can be exported
into separate files for later usage.

DETAILED SYSTEM DESCRIPTION
Our software consists of the following parts.

• Configuration GUI

• Control GUI

• Simulation container

– CPG kernel

– Data handlers

– OpenRAVE as core simulation system

• Several I/O-classes

The structure of the simulator is also shown in Fig.2.

Configuration GUI
The configuration GUI can be started in two different
modes. One is a wizard for simple usage that guides the
user through all steps that are neccessary to set up and
start a simulation. The expert mode allows us to config-
ure only the neccessary steps seperately. It can be used
to generate configuration files for only a single step of
the whole configuration process and to reuse configured
parts that were already defined.
The configuration wizard is made for people who are not
familiar with this software or are just starting with mod-
ular robots. Without knowledge about the simulator and
some basics about C++ it should be possible to create a
robot, to define the behaviour of its joints and to create
a world, the workspace of the robot. Only a few ideas
about locomotion principles of modular robots in chain
configuration will be needed to fullfill this task. This also

GUI

Control

Configuration I/O-
Classes

Simulation Container

Robot
Models

Data
Handlers

CPG-
Kernel

OpenRAVE

Coin3D -
viewer

ODE
OpenRAVE -

Plugins

Figure 2: The architecture of the simulator.

means that everybody dealing with computer science is
able to implement a simple locomotion algorithm after a
short introduction to the locomotion principles of modu-
lar robots.
The expert mode is intended for the experienced user who
wants to create different simulation set-ups to compare
the results for qualitative analysis. The expert mode is
useful because the configuration of a whole simulation
consists of many parts and it is possible to reuse some
of them for another simulation set-up to save time and
avoid monotonic work. A simulation configuration file
containes three parts:

• the robot configuration file with all of the physical
parts of the robot and the sensors

• a configuration for the joint actuation of a specific
robot

• the definition file of the environment

Complex environments, suitable for tasks of a robot de-
scribed in (Granosik et al., 2005), can be built by using
the integrated environment editor. Additionally, there are
some global options that can be adjusted to determine the
simulation mode and some other properties.

Control GUI
The control GUI offers different tabs to give structured
access to the different components. It communicates
with the core of the simulator with the help of the Sig-
nals and Slots principle used by Qt. In this way the delay
between two simulation steps of the discrete simulation
can be changed. When the simulation is started and the
user has configured the simulator to store the calculated
data, all of the data gets stored to a temporary file after a

certain period. The user can store this data to a file any
time.
One tab is for the data live-plots and enables the addition
of several plot widgets that can contain any combination
of the available data type. To select the desired combi-
nation of plots a GUI element with checkboxes, one for
each avilable data series, has been created. It is possible
to change the sampling rate, the refreshing rate, as well
as the size of the buffer containing the data. The GUI
elements used for the plotting are taken from the QWT
library. QWT supports a lot of features that can help
to display data on the screen in a clean and clear way.
As a data buffer for the plots the circular buffer from the
Boost-library has been used. It is easy to handle and very
efficient because the single entries in the circular buffer
are contiguous in the memory. Resizing of this circular
buffer has been proved to be very stable in our experi-
ments.
Another tab offers access to the used sensors in the cur-
rent robot. It is possible to change the state of the single
sensors, e.g. sensors can be switched on and off.
With the help of the data-tab, recorded simulation data
of the currently running or already past simulations can
be loaded. It is possible to select one or more graphs
to plot it on the screen. These plots can be exported to
portable network graphics (*.png) or into a gnuplot file
for later, more differentiated usage. After loading a data
file, all contained types can be selected. In case of a spe-
cific value type the number of the joints is an additional
criterium that must be chosen.
The last tab contains the Coin3D-viewer taken from
OpenRAVE to visualize the simulation running in the
core module with OpenGL. It supports all features from
the original OpenRAVE software and can be used as de-
scribed in the OpenRAVE documentation. The viewer
uses very simple shading mechanisms to achieve high
performance even on slower systems. Tests with an
EeePC 1000H netbook have revealed that our software
works on such slow systems. With the viewer the pose of
the camera can be changed according to the needs of the
user and videos of the simulation can be recorded. It is
possible to manipulate displayed objects. Objects can be
moved and joint-angles can be adjusted.

Simulation Container
The container, where the core of the simulator is run-
ning, is a class inherited from QThread. The thread calls
all neccessary step-functions of the OpenRAVE environ-
ment and the CPG-Kernel and emits certain signals. For
example, one signal is emitted after one calculation step
has been completed. The speed of the simulation depends
on the machine where the program is running. To achieve
a short time of response in the system, an adjustable de-
lay between the calculation steps has been added. In this
way the speed of the simulation and the CPU load can be
controlled.
The container can run without the graphical components.
This is useful for longtime- or remote-runs of the pro-

gram, for example when a parameter or an algorithm for
locomotion needs to be optimized. In these cases graph-
ical output is not needed and computational effort can be
saved.

CPG-Kernel
The most important part of the work was to create an
abstract interface that fulfills the needs of any general
central pattern generator or other locomotion algorithms.
Our interface facilitates the creation of new control-
algorithms. It has been tested for arbitrary algorithms
from scientific publications which can be evaluated, op-
timized or combined in several ways. Even distributed
control algorithms that have been described in (Conradt
et al., 2003) can be implemented. To integrate as much
functionality as possible in the Control-GUI and to al-
low for further extension of the program, it has been re-
alized as an abstract base interface that holds only the
most common features of a control algorithm. To provide
enough flexibility for future implementations of several
locomotion or actuation algorithms it has been kept sim-
ple. But it offers some basic functionality like parameter-
modulation, data-handling and supervising of the current
state.

I/O-Classes And Data Handlers
There are many XML-readers and -writers to store and
read all of the needed information for specifying a sim-
ulation in detail. To overcome this complexity, arbitrary
classes for each category have been created. Access to
these classes using a graphical interface hides the syntax
needed to build valid configurations and makes the pro-
cess of configuring parts of a simulation very fast, easy
and robust.

• Robot-configuration-writer

• Sensor-configuration-writer

• Actuation-configuration-writer and -reader

• Environment-configuration-writer

• Simulation-configuration-writer and -reader

• Simulation-data-writer and -reader

There are three different kinds of simulation-data occur-
ing in a running simulation. For each type a data handler
has been implemented to manage the values.

• CPG-/locomotion-algorithm data

• Robot data

• Sensor data

For each type the values are computed after the global
step-function is called. It is the same for the physics en-
gine and the OpenRAVE-core as for our simulator- and
CPG-core. A reader and a writer have been implemented
to access and generate these files. The data format makes
it possible to acquire specific data-series from the file
even if different files contain different types of data.

EXAMPLE — HOW TO USE THE SYSTEM
In the following the complete process to create a proper
simulation is described. It includes how a new locomo-
tion algorithm can be defined using the beginner’s config-
uration wizard of the simulator and how the simulation
can be started.

Starting The Simulator
After the program has been started from the command-
line a dialog is shown. A button with ‘Start Wizard’ has
to be used to start the wizard.

Creating A Robot
The first page of the current version of the wizard, shown
in Fig. 3, is intended to create a robot. It is necces-
sary that a reasonable name is given to the robot. It will
be used for the filename-generation of the configuration
file describing the robot. Because the interface is built
to create robots in a chain-like configuration it is rec-
ommended to select the needed topology. To create a
robot with three-dimensional locomotion capabilities the
‘Pitch-Yaw’ connection type has to be selected. The size
of the robot can be changed by selecting a reasonable
number of modules, e.g. five. The preview in the lower
right corner gets updated if anything has been changed.
For simplicity no sensors have to be added this time. That
is enough for a simple robot and the ‘Next’ button can be
clicked.

Figure 3: With the robot creation page robot description
files can be created in a simple way without any knowl-
edge about the OpenRAVE XML tags.

Creating A User-Defined Locomotion Module
A new dialog page will appear for creating a new control
algorithm. With this interface all neccessary properties
of the new algorithm can be declared and applied with
initial values. To create a new control module that
generates sinusoidal output, a name for the new module
must be given first. This name will be used for the new

class. To have access to the hidden functionality of the
actuation modules, like plotting and storing of data, as
well as live modulation of the output, some properties
of the new module must be declared. All parameters
must be registered one after the other and initial values
must be given to initialize the new module. In this ex-
ample, four parameters including amplitude, frequency,
phase-difference and stepsize are typed as neccessary
parameters. Using the sine function to calculate the
output angles, an input will be needed. That is the
reason why a value type called ‘time’ must be added.
It is related to the parameter stepsize. Both together
will be used to generate a slowly increasing value as
input for the oscillating sine function. By clicking the
button ‘Next’, a header- and an implementation-file will
be generated. For this simple actuation module only
the ‘CalculateAngles’-function must be implemented in
the implementation window of the next dialog page. A
single loop that calculates the output for each joint has
to be added for this purpose:

1 f o r (i n t m=0; m< n u m O f C o n n e c t e d J o i n t s ; m++)
2 {
3 ∗ c u r r e n t t i m e (m) = ∗ o l d t i m e (m) + ∗ S t e p s i z e ;
4

5 ∗ c u r r e n t a n g l e (m) = ∗Ampl i tude
6 ∗ s i n (2∗M PI∗∗Frequency∗∗ c u r r e n t t i m e (m)
7 +m∗∗P h a s e D i f f e r e n c e∗M PI / 1 8 0) ;
8

9 Se tAng le (m, ∗ c u r r e n t a n g l e (m)) ;
10 }

A click on the ‘Compile’ button causes the new module
to get compiled to the user library.

Defining The Behaviour Of The Robot
Functionality can be added to the joints with a grouping-
interface. Users can select desired joints as a group and
perform them with a common control method. In this
example, by clicking the button ‘Add Group’, only the
pitching joints are added as a group. The newly devel-
oped control method is then applied to this group.

Creating An Environment

Figure 4: A very simple environment containing the
robot and one floor has been constructed with the inte-
grated environment-editor.

Arbitrary ‘Available Items’ can be added to the
currently empty environment with the help of drag-and-
drop into one of the two editor views. The previously
defined robot will be placed with the help of the rep-
resentative object for its pose. In this way the pose of
the robot can be changed. To change the position of any
object it can be dragged in one of the views. To change
the x- and the z-coordinate the side-view can be used,
for x- and y-coordinate the top-view. The size and the
orientation relative to the z-axis can be changed after
the current object has been double-clicked. The selected
item can be resized and rotated with the help of the
buttons. To fit the created objects in the two views the
zooming-buttons should be used. The preview, as shown
in Fig. 4, can be eanbled by selecting the checkbox
labeled with ‘Show Preview’. Each object, except the
robot’s position object, can be right-clicked to adjust the
frictional coefficient that has a range between zero and
one. In this way a slippery ground can be simulated as
well as a very sticky floor.

Setting-Up The Global Simulation Properties
At the bottom of the last wizard-page the full paths of
the recently created configuration files are summarized.
With the upper part the simulation mode and some prop-
erties can be changed. ‘Single Run Simulation’ must be
selected to create a simple simulation that keeps running
until it gets stopped by the user. With the sampling rate
the computational effort of the simulation and its rela-
tive to the steps of the OpenRAVE-core is determined.
A value of 30 means that every 30th physics-engine-step
one step of our sensors and actuation modules will be
computed. For the physics-engine-step size a standard
value of 0.001 is recommended. Storing of the calculated
data can be deactivated, if needed. After hitting ‘Finish’
a master configuration file will be stored that contains the
names of all other files and the newly added simulation
properties. This file will be passed to the simulator that
gets initialized with the information from this file.

Starting The Simulation And Using The Control GUI

Figure 5: Example of online-modulation of the phase dif-
ference between neighboring modules.

To start the simulation the ‘Play’-button, located at the
toolbar of the control GUI, must be pressed. It can also
be used to pause the simulation.With the properties di-
alog all control parameters of the currently applied ac-
tuation modules can be modulated online. As shown in
Fig. 5 for example the phase can easily be changed us-
ing the properties dialog. To visualize the calculated data
the checkboxes of the plot-selector-element of the con-
trol GUI can be used to add arbitrary data-lines to a new
plot. The live-plot will be created after the button, labled
with ‘Add’, has been pushed.

CONCLUSION

A new graphical user interface to create and control sim-
ulations for modular robots in an easy and flexible way
has been introduced. The software focusses on modular
robotics and their control algorithms. It tries to hide the
programming part as well as possible behind the GUI. In
this way even beginners with very limited time are able
to use the software with only basic knowledge in writing
C++ functions and little idea of modular robotics. It en-
ables beginners to get in contact with modular robotics
and intermediate users will benefit from a decrease in
time for implementing their own ideas. The software ful-
fills two tasks. On the one hand it can be used as an
educational framework to introduce somebody to modu-
lar robotics in an explorative way and on the other hand
it can be used in research to get results from optimiza-
tion methods. Studies and improvements of control algo-
rithms can be done with reduced time effort. To the best
of our knowlegde this is very new and offers a framework
to achieve good results from the simulation of control al-
gorithms that can be applied to real modular robots.

FUTURE WORK

Considerable works remains to be done, e.g. in extend-
ing existing parts. To reduce the restrictions in building
modular robots another page to create new modules will
be added to the configuration interface. Simple geomet-
ric objects or 3D-data of a single link will be used to cre-
ate a new module available in the robot-construction page
of the configuration-GUI. More sensors with adjustable
properties will be implemented. The placing of the sen-
sors needs to become more flexible. Creation of actuation
modules using sensor information via the configuration-
GUIs will be implemented. The library of objects for cre-
ation of the environment should also be extended to build
a world suitable for more complicated tasks. More simu-
lation modes that support the user in getting good results
from the simulations will be implemented. These will
include optimization methods, especially learning mech-
anisms, that improve a single parameter or a whole fea-
ture vector of a certain actuation module.

REFERENCES

Beveridge, J. (1998). Self-Registering Objects in C++. Dr.
Dobb’s Journal, Vol. 23, Issue 8, pp. 38-41, August 1998.

Conradt, J., Varshavskaya, P. (2003). Distributed central pat-
tern generator control for a serpentine robot. ICANN 2003.

Daidié, D., Barbey, O., et al. (2007). The DoF-Box Project: An
Educational Kit for Configurable Robots. Switzerland, ETH
Zurich, Proceeding of AIM 2007, 4 - 7 Sept., 2007.

Diankov, R. (2010). Automated Construction of Robotic Ma-
nipulation Programs. Carnegie Mellon University, Robotics
Institute, 2010.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch,
G. (2005). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mas-
sachusetts, 2005.

Gonzalez-Gomez, J., Zhang, H., Boemo, E., Zhang, J. (2006).
Locomotion Capabilities of a Modular Robot with Eight
Pitch-Yaw-Connecting Modules. Proceeding of CLAWAR
2006, Brussels, Belgium, September 12-14, 2006.

Gonzalez-Gomez, J. (2010). OpenMR: Modular Robots plug-in
for Openrave. http://www.iearobotics.com/wiki/index.php?
title=OpenMR: Modular Robots plug-in for Openrave,
2010, (last access in March 2012).

Granosik, G., Hansen, M. G., Borenstein, J. (2005). The Omni-
tread Serpentine Robot for Industrial Inspection and Surveil-
lance. Industrial Robot: An International Journal, Vol.32,
No.2, pp.139-148, 2005.

Herrero-Carrón, F. and Rodrı́guez, F. B. and Varona, P. (2010).
Study and application of Central Pattern Generator circuits
to the control of a modular robot. Escuela Politécnica Supe-
rior, Universidad Autónoma de Madrid, 2010.

Hirose, S., Morishima, A. (1990). Design and control of a mo-
bile robot with an articulated body. The International Jour-
nal of Robotics Research, Vol. 9 No. 2, pp. 99-113, 1990.

Hirose, S. (1993). Biologically inspired robots (snake-like lo-
comotor and manipulator). Oxford University Press, 1993.

León, B., Ulbrich, S. Diankov, R.,Puche, G.,Przybylski,
M.,Morales, A.,Asfour, T.,Moisio, S.,Bohg, J., Kuffner, J.,
Dillmann, R. (2010). OpenGRASP: A Toolkit for Robot
Grasping Simulation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010.

Michel, O. (1998). Webots. http://www.cyberbotics.com, 1998,
(last access in March 2012).

Miller, A., Allen, P. K. (2004). Graspit!: A Versatile Simula-
tor for Robotic Grasping. IEEE Robotics and Automation
Magazine, Vol. 11 No. 4, Dec. 2004, pp. 110-122, 2004.

Murata, S., Yoshida, E., Kamimura, A. , Kurokawa, H., Tomita,
K., Kokaji, S. (2002). M-TRAN: self reconfigurable modular
robotic system. IEEE(ASME) Transactions on Mechatron-
ics, December 2002.

Smith, R. (2006). Open Dynamics Engine. http://www.ode.org,
2006, (last access in March 2012).

The Player Project (2008). The Player Project.
http://www.playerstage.sourceforge.net, 2008, (last ac-
cess in March 2012).

Wall, M. (2007). Matthew’s Genetic Algorithm Library
http://lancet.mit.edu/ga/, 2007, (last access in March 2012).

Zhang, H., Baier, T., Zhang, J. , Wang, W., Liu, R., Li, D.,
Zong, G. (2006). Building and Understanding Robotics —
a Practical Course for Different Levels Education. Proceed-
ings of the 2006 IEEE, International Conference on Robotics
and Biomimetics, Kunming, China, December 17-20, 2006.

AUTHOR BIOGRAPHIES
DENNIS KRUPKE is student assistant at TAMS,
Department of Informatics, University of Hamburg,
Germany. His research interests are simulative systems
and control of modular robots.

GUOYUAN LI is PhD student at TAMS, Department
of Informatics, University of Hamburg, Germany. His
research interests lie in locomotion control and CPG
model design.

JIANWEI ZHANG is professor and head of TAMS,
Department of Informatics, University of Hamburg, Ger-
many. His research interests are multimodal information
systems, novel sensing devices, cognitive robotics and
human-computer communication.

HOUXIANG ZHANG joined the Department of
Technology and Nautical Sciences, Aalesund University
College, Norway in April 2011 where he is a Professor
on Robotics and Cybernetics. The focus of his research
lies on mobile robotics, especially on climbing robots
and urban search and rescue robots, modular robotics,
and nonlinear control algorithms.

HANS PETTER HILDRE is professor at the Faculty
of Maritime Technology and Operations, Aalesund
University College, Norway.

ACKNOWLEDGEMENT
This work has been supported by the BICCA project,
which is a DFG project concerning the development of
a biologically inspired climbing caterpillar.

View publication statsView publication stats

https://www.researchgate.net/publication/268602954

